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Abstract—Generative text-to-audio models hold immense po-
tential for enhancing creativity in music-making. However, exist-
ing models often lack the specificity required for high-quality
music generation. This project addresses this gap by fine-
tuning Stability AI’s Stable Audio model—a CLAP-guided latent
diffusion model—on the Music Caps dataset using Low-Rank
Adaptation (LoRA). This approach not only enhances the model’s
ability to generate musically coherent audio but also significantly
reduces computational costs. Our results, evaluated through both
objective metrics and subjective listener surveys, demonstrate
improvements in musical quality and training efficiency, con-
tributing to the growing body of research in music-focused
generative models.

I. INTRODUCTION

Generative music models offer a promising avenue for
enhancing the creative process in music-making. Text-to-
audio models, in particular, can serve as collaborative tools,
providing stylistic ideas or phrases to inspire musicians. While
existing open-source text-to-audio models vary in their audio
generation capabilities, few are fine-tuned specifically for
high-quality music generation. Consequently, general-purpose
audio models often fail to produce outputs of high musical
integrity, highlighting the need for improved models tailored
to music generation.

LORA-AIDED FINE-TUNING ON AUDIO DIFFUSION.

Inspired by OpenAI’s Contrastive Language-Image Pretrain-
ing (CLIP) model [1], which guides stable diffusion for image
generation, we propose an analogous approach for audio.
Specifically, we leverage Microsoft’s Contrastive Language-
Audio Pretraining (CLAP) model [2] and Stability AI’s Stable
Audio framework [3], which integrates CLAP’s text encoder
with stable diffusion, to create a text-to-audio generation
pipeline. However, fine-tuning Stable Audio’s diffusion pro-
cess directly incurs significant computational costs. To address
this, our project employs Low-Rank Adaptation (LoRA) [4] to
fine-tune the model on Music Caps, a music-specific dataset,

with greatly reduced training overhead. Doing so achieves
two key objectives: first, it fine-tunes a text-to-audio model
specifically for music generation on a dataset where this has
not been attempted, and second, it ensures computational
efficiency.

II. RELATED WORK

The Stable Audio model is a generative text-to-audio model
that combines CLAP for its text-to-audio functionality, U-Net
diffusion for audio generation, and a varational autoencoder
for the ability to represent audio files in latent space [2] [3].
Model fine-tuning pulls from LoRA, a technique introduced
in class that involves training low-rank adaptation matrices
to efficiently fine-tune pre-trained models without modifying
the original weights [4]. There are also existing models in
the literature that have fine-tuned Stable Audio for generation
of specific sounds [5], but no open-source fine-tune exists
for our dataset. And in terms of evaluation metrics of our
generated music, we pull from existing literature that details
both objective and subjective evaluation metrics, quantifying
the harmonic, rhythmic, and genre-related accuracy of music
generated through large language models [6] [7] [8].

III. APPROACH

We fine-tune CLAP-guided diffusion in the original Stable
Audio model for higher quality music generation by using
additional audio-text data, and to mitigate the issue of ex-
pensive fine-tuning, we apply our secret weapon LoRA to
fine-tune Stable Audio’s diffusion model, which is a U-Net
that constructs latent audio representations. In particular, using
LoRA freezes the original model and injects LoRA-trainable
matrices into the cross-attention layers of the diffusion model,
necessitating saving only the weights of the new layers derived
from fine-tuning the “residual” of the model instead of all
trainable weights. Thus, we are able to reduce computation
drastically.

Our approach is novel as no pre-existing literature fine-
tunes Stable Audio’s diffusion model using our specific dataset
(detailed below IV). Our LoRA fine-tuning of this diffusion
model using our dataset is therefore novel as well. The novelty
of our approach is owed in part to the novelty of the field —



most research on audio diffusion models has been published
within the last 6 months [3].

IV. IMPLEMENTATION

We now discuss the tangible implementation of our ap-
proach through detailing our tools and walking through our
concrete experimental setup.

A. Models, Dataset, and Tools

We utilize the Stable Audio Open 1.0 model [5] for our fine
tuning. We select this model as it is the most recent audio
diffusion model open-sourced on HuggingFace. Additionally,
the model effectively combines a text-to-audio model (CLAP)
with stable diffusion (U-Net diffusion) and an encoding-
decoding scheme for latent audio representation (variational
audio encoder and decoder) in one streamlined model, allow-
ing for a streamlined workflow to fine-tune stable diffusion
directly, eliminating the need to independently integrate and
manage these components.

Our dataset of choice is the Music Caps dataset from Google
Research [9], an openly available collection of audio files and
text captions (genre, key, tempo, stylistic description, etc.)
from over 5000 diverse copyright free music tracks curated on
YouTube. We select this dataset for its novelty, and also for
its pre-pairing of .wav files with accompanying text metadata.
We access the models and dataset through Hugging Face [5]
[9], and to make these files, in addition to our own code and
outputs, accessible to our group members, we conducted file
management using Google Drive (linked in Section VIII).

To implement LoRA fine-tuning, we use previously existing
architectures for fine-tuning stable audio diffusion accessible
through GitHub [10]. For our evaluation metric implementa-
tion, we use pre-existing GitHub repositories as well [6].

B. Experimental Set-Up

To evaluate the quality of our fine-tuning, we use the
Stable Audio model as the baseline and our fine-tuned music-
specific model as the experimental model for comparison.
Controlling for the same set of text prompts, we invoke both
the baseline and fine-tuned models to generate music from
a diverse selection of musical genres. In particular, we use
the default parameters provided by Stable Audio Open 1.0:
20-second-long audio snippets, generated at a classifier-free
guidance (CFG) scale parameter of 7 (controlling how much
output generation follows the text prompt — higher values fit
stronger to the prompt) [11].

Finally, we conduct evaluation of these outputs using a com-
bination of both objective and subjective evaluation metrics.
Objective metrics qualify the generated music based on values
calculated from the audio data itself, while subjective metrics
are determined by surveying listeners.

V. RESULTS

We now discuss our results, first detailing the efficiency
improvements acheived by using LoRA to fine-tune Stable
Audio’s diffusion model (as compared to fine-tuning with-
out LoRA), then presenting the results of our conducted

experimental setup. Finally, we will provide discussion and
interpretation of these experimental results. Generated audio
outputs are available in our repository.

A. LoRA Speedup

First, utilizing LoRA in our experimental model increased
the efficiency of fine-tuning our audio diffusion by almost
double. We tested this training speed-up by fine-tuning our
baseline model without LoRA on the entire dataset for a
few hours, for the sake of comparison with LoRA-aided fine-
tuning. When using an A100 GPU and training on 5357 pieces
of data, LoRA fine-tuning in the experimental model trained
roughly 1.9375 epochs per hour, while the baseline model fine-
tuned only 0.9 epochs per hour. Thus, by using LoRA, we
fine-tuned the baseline model 115.278% faster than we would
have performing a non-LoRA fine-tune.

B. Music Generation

To evaluate our experimental model against the baseline,
we generated music from a number of genres, namely: choral,
classical, dance, jazz, pop, and rock. For each genre, we
created prompts of increasing levels complexity, by increasing
descriptiveness and word count, to build a diverse set of model
outputs for each genre. These exact prompts can be found in
our repository.

We control for this set of prompts in evaluating both the
baseline and experimental models, ensuring all differences
in model can be attributed to the models themselves (and
stochasticity).

C. Subjective Evaluation:



We conduct subjective evaluation of the generated outputs
through listener surveying. For each piece of music, listeners
are asked to rate the following characteristics: Harmony—the
quality of pitches, both in the melodies and chords of the
music; Rhythm—the consistency and stability of beats within
the music; and Genre Fit—The accuracy of the music to its
categorized genre (ex. classical).

We conducted surveys on 5 listeners using all generated
outputs across all genres and from both models. Averaging
across genre and listener, we generated the following plots
comparing the subjective evaluation of both models for each
metric. Each plot additionally includes a global score averaged
across all genres.

D. Objective Evaluation:

We additionally conduct objective evaluation on the gen-
erated outputs by computing a set of values for each piece
of generated music directly from the audio files themselves.
Specifically, we compute the following characteristics: Har-
monic Accuracy—the percentage of pitches that belong to
a standard scale, reporting for the best matching such scale;
Melodic Complexity— the number of unique pitches in the
music; and Rhythmic Inconsistency—the average degree to
which pitches are off beat, expressed as a percentage of a
single beat (quarter note).

We computed these values for all generated outputs, across
all genres and for both models. Averaging across genre,
we recorded these values in the following table. The table
additionally includes a global score averaged across all genres:

TABLE I
OBJECTIVE METRICS

Objective
Metrics

Experimental Baseline

Harmonic
Accuracy

Melodic
Compl.

Rhythm
Incons.

Harmonic
Accuracy

Melodic
Compl.

Rhythm
Incons.

Global 91.4% 15.778 3.4% 91.2% 16.222 3.3%
Choral 81.3% 11 3.7% 93.3% 5.667 2.0%
Classical 87.7% 14.667 4.1% 85.3% 11.667 4.4%
Dance 98.3% 19 2.3% 88.0% 25.333 2.8%
Jazz 93.0% 18.667 3.6% 87.3% 20.333 4.3%
Pop 96.0% 15 3.4% 98.3% 16.667 3.0%
Rock 92.3% 16.333 3.0% 94.7% 17.667 3.2%

E. Interpretation and Discussion:

From our subjective survey results, we clearly observe that
listeners show a preference towards the music produced by
the experimental model across all metrics and genres. This is
a clear indication that our fine-tuning results in a improvement
in music quality to the human ear.

Interestingly, we note that both models demonstrate similar
strengths and weaknesses when it comes to genre. Genres
such as choral, dance, and rock score similarly high and
genres such as jazz score similarly low. This is likely an
indication that, while our fine-tuning leads to an improvement
from the baseline model, both models maintain some degree
of similarity. One reason for this could be that many of the
baseline model weights are preserved when conducting LoRA
fine-tuning, as only a small subset of weights are updated.

From our objective metrics, we note that both the baseline
and experimental models demonstrate relatively high harmonic
accuracy and low rhythmic inconsistency, indicating they are
both produce outputs that are musically sound.

When approaching melodic complexity, we note that the
baseline model demonstrates increased complexity for the
genres dance, pop, and rock. When contextualized with our
subjective results (as well our own intuition when listening),
we note that this higher melodic complexity of the baseline
in these genres appears to lead to more muddled and ca-
cophonous music, while lower complexity in the experimental
model appears to simpler, more digestible melody and har-
mony. This simplicity is intuitively important to the genres of
dance, pop, and rock. We believe these results are an indication
that our fine-tuning has captured this underlying concept.

For the genres of choral and classical music, the baseline
model demonstrates noticeably low melodic complexity. Here,
it appears the higher melodic complexity of our experimental
model captures higher granularity in these genres.

Beyond these differences in melodic complexity, however,
our objective evaluation results do not point towards the
noticeable improvement in music quality reflected in our
subjective evaluation. This is a reflection of a truth that we
as musicians already believe - that music is more than just
the right notes and rhythms - but rather their specific creative
combination turned into art. In this sense, objective metrics
alone appear to fall short in accurately evaluating the quality
of music.

VI. CONCLUSION

This project successfully fine-tuned Stability AI’s Stable
Audio model for music generation using LoRA, achieving
both high-quality audio outputs and computational efficiency.
Our subjective evaluation highlights significant improvements
in musical harmony, rhythm, and genre alignment, while
objective metrics confirmed the model’s ability to produce mu-
sically sound outputs. These findings underscore the potential
of LoRA fine-tuning for domain-specific audio applications.
Future work could explore more diverse datasets, extend model
capabilities to longer compositions, and refine evaluation met-
rics to better capture the artistic nuances of music.
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Gabe’s contributions: Model and Dataset Research; Data
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Refinement; LoRA Fine-Tuning Implementation; Objective
Evaluation; Subjective Evaluation; Survey Interviews; Writeup
of Implementation and Results.

Liz’s contributions: Model and Dataset Research; LoRA
Fine-Tuning Training; Survey Interviews; Writeup of Abstract,
Introduction, Related Work, Approach, Implementation, Con-
clusion, and aided in writing of Results.

VIII. SUPPLEMENT

All of our code, data, and audio outputs can be found in this
Google Drive. The “output audio” folder includes our LoRA
fine-tuned experimental model outputs, as well as the non-
fine-tuned Stable Audio model outputs on the same prompts.
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